Synthesis of hydrogen peroxide in water ice by ion irradiation

نویسندگان

  • M. J. Loeffler
  • U. Raut
چکیده

We present infrared absorption studies on the effects of 50–100 keV Ar+ and 100 keV H+ ion irradiation of water ice films at 20–120 K. The results support the view that energetic ions can produce hydrogen peroxide on the surface of icy satellites and rings in the outer Solar System, and on ice mantles on interstellar grains. The ion energies are characteristic of magnetospheric ions at Jupiter, and therefore the results support the idea that radiolysis by ion impact is the source of the H2O2 detected on Europa by the Galileo infrared spectrometer. We found that Ar + ions, used to mimic S+ impacts, are roughly as efficient as H+ ions in producing H2O2, and that 100 keV H+ ions can produce hydrogen peroxide at 120 K. The synthesized hydrogen peroxide remained stable while warming the ice film after irradiation; the column density of the formed H2O2 is constant until the ice film begins to desorb, but the concentration of H2O2 increases with time during desorption because the water sublimes at a faster rate. Comparing the shape of the 3.5-μm absorption feature of H2O2 to the one measured on Europa shows excellent agreement in both shape and position, further indicating that the H2O2 detected on Europa is likely caused by radiolysis of water ice.  2005 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of hydroxylamine (NH2OH) in electron-irradiated ammonia-water ices.

We investigated chemical and physical processes in electron-irradiated ammonia-water ices at temperatures of 10 and 50 K. Chemically speaking, the formation of hydroxylamine (NH(2)OH) was observed in electron-irradiated ammonia-water ices. The synthesis of molecular hydrogen (H(2)), molecular nitrogen (N(2)), molecular oxygen (O(2)), hydrazine (N(2)H(4)), and hydrogen peroxide (H(2)O(2)), which...

متن کامل

Electron irradiation of crystalline and amorphous D2O ice

We studied the electron irradiation of crystalline and amorphous deuterated water ices at 12 K. The experiments show that molecular deuterium (D2), molecular oxygen (O2), and Hydrogen peroxide (D2O2) were produced inside the irradiated ice samples. A quantitative comparison of crystalline and amorphous ice samples showed that the production rates of D2, O2 and D2O2 in amorphous ices are systema...

متن کامل

Investigation into the effect of UV/Ozone Irradiation on the dyeing ‎behaviour of Poly(lactic acid) and Poly(ethylene terephthalate) ‎Substrates

The effect of UV/Ozone irradiation together with the pretreatments using distilled water, hydrogen peroxide, and hydrogen peroxide/sodium silicate solutions on the dyeing depth of the poly(lactic acid), PLA, and poly(ethylene terephthalate), PET, fabrics by the application of disperse dyes were investigated and the results were compared with that of untreated fabrics. The results showed that th...

متن کامل

Formation of Hydrogen, Oxygen, and Hydrogen Peroxide in Electron Irradiated Crystalline Water Ice

Water ice is abundant both astrophysically, for example in molecular clouds, and in planetary systems. The Kuiper belt objects, many satellites of the outer solar system, the nuclei of comets and some planetary rings are all known to be water-rich. Processing of water ice by energetic particles and ultraviolet photons plays an important role in astrochemistry. To explore the detailed nature of ...

متن کامل

Temperature Dependence of the Formation of Hydrogen, Oxygen, and Hydrogen Peroxide in Electron-irradiated Crystalline Water Ice

We conducted a systematic study of the irradiation of crystalline water ice in an ultrahigh vacuum chamber at pressures of about 10!10 torr. Crystalline water ices of 115 " 30 nm thickness were irradiated with energetic electrons at 12, 40, 60, and 90 K to simulate energetic particle interaction with solar system and interstellar water ices. The production rates of molecular hydrogen (H2), mole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005